JDeveloper JSP Development Best Practices: Thick Databases Illustrated

JDeveloper JSP Development Best Practices: Thick Databases Illustrated
The process of building a scalable and maintainable web application has many tradeoffs to consider. No single approach can handle all of the possible situations. However, after a few years of implementing small, medium and large web applications, several best practices have emerged.
The most important of these is to move as much code as possible into the database. This is a difficult transition for most experienced application programmers to make. Historically, applications have been built with tools that coded a great deal of complexity into the client-end. This approach embraces an architecture that views the database as nothing more than a set of tables to hold information. The complex set of rules for modifying data would be entirely handled by the client application. Now, with browser-based, internet applications this approach is no longer appropriate. The current thinking is based around the phrase “thin-client,” which can be leveraged to the point that nearly all data collection, validation, navigation, and error handling is performed in the database.
[image: image1.png]Previous
Employecld
Managerld
Departmentld
FirstName

LastName
DepartmentName
TobTitle

City
StateProvince

ST_MAN Weiss, Mathew v,

Julia
Nayer
Shipping
Stock Clerk

'South San Francisco

L]

California

Consider building a simple application that attempts to update a single record. During the update process, the client code would only capture and submit the information the user wishes to update. The remainder of the validation and logic for correctly applying the updates would be handled with code in the database. If the database validation fails, a custom error message is sent back with information that will direct the client to re-display the update record page. If the validation succeeds, the database directs the client code to a Success Page as shown in Figure 1.
Figure 1: Data update and validation path
The majority of the work required to build this simple web application will be in the creation of the appropriate database objects. When the database is complete, the remaining work is equally divided between the middle tier (ADF BC) objects, Struts diagram, and page layout.

For this training session, you will do the following:

1. Analyze a set of business rules to display information for a given employee.

2. Update the manager to whom the employee reports by selecting one of the managers in the list-of-values (LOV).
The completed application will look something like Figure 2.

[image: image39.png][Categories

= General
Workspaces
Deployment Profies
Diagrams
JavaBeans
Projects
Siple Fies

= Business Tier

|8 Business Components Deployment P
[F Business Componerts Disgram

(@ Applcaton Modle

98 assocation

(3 Defauk D Model Comparents
38 Daman

I3 Entity Object

Figure 2: Sample Employee/Manager Application
I. Exploring the Human Resource (HR) schema

The application you will build will be based on Oracle’s sample HR schema, plus a few additions.
[image: image33.png]= 3 My Schema [28]
= @ Tables[9]

The HR schema tables shown in Figure 3 have been created to store simple business organizational information. The schema has implemented a number of hierarchical relationships between the objects stored in these tables using traditional database constraints.

You can examine the REGIONS table shown in Figure 4 by selecting Tools/SQL Worksheet and typing in the statement shown in Figure 4.
Figure 3: HR Schema Tables
[image: image2.png]fm SELECT a.region_id, a.region name
FROM regions a

[1]: Statement processed n 0.03 sec; see Spool b,

IR

el

1 Europe
2 2 Americas

3 3 Asa

4 4 Mdde East and Africa

Figure 4: HR Schema Regions Table

The COUNTRIES table shown in Figure 5 is a child of the REGIONS table. Notice the Foreign Key (FK) column for the parent table on the right (REGION_ID).
[image: image3.png]fm SELECT a.country_id, a.councry name, a.region_id
FROM countries a

tatement processed n 0.02 sec; see Spool b

IR

bt

[ox

Figure 5: HR Schema Countries Table
Going to the next levels, the LOCATIONS, DEPARTMENTS and EMPLOYEES tables are shown in Figures 6, 7 and 8.
[image: image4.png]fm SELECT a.location_id, a.street_address, a.postal code, a.City,
a.state_province, a.country id
FROM locations a

[1]: Statement processed n 0.02 sec; see Spool tab,

HKw > n+ - ol s | & x
[Row = [LOCATION_ID [STREET_ADDRESS TposTaL cooe [ery [STATE _PROVINGE [COUNTRY_D

v 000 297 Vi Cole d e woses Roma T
2 1100 53091 Call delaTesta W Ve b
3 200 2017 Sk 1609 Toko Tokyorefectre
i 1300 5450 Kamya-cho 623 Hroshima »
s 1100 2014 ebbervocky Rd B2 ot s s
. 1500 2011 Tnerirs B 2% sauthsenFrencaca Calfemia s
7 1500 2007 2agorast 5000 SoutBunowck Newlesey U
s 1700 2004 Crrade R w9 sete Washngton US
B 1800 147 Spacina Ave VA7 Toronto s e

Figure 6: HR Schema Locations Table

[image: image5.png]SELECT a.deparcment_id,

FROM departments a

a.department_name, a.manager_id,

a.location_id

tatement processed n 0.02 sec; see Spool b

1« rm+ - ol e

5

£ Ox

3

Row = [PEPARTVENT 1D [DEPARTHENT_NAVE [WANAGER b [1oCATION D |

10 Administrationxx
20 Marketing

30 Purchasing

40 Human Resources
50 Shipping

o

g ST w—

£l
ER
14
23
21
103
e

70
15800
170
200
1500
1400
=iy

Figure 7: HR Schema Departments Table

[image: image6.png]SELECT a.enmployee_id, a.fizstc_name, a.last_name, a.email,
a.pnone_number, a.hire date, a.job_id, a.salary,
a.commission pct, a.manager id, a.deparcment id

[1]: Statement processed n 0.03 sec; see Spool b,

B« rm+ -ofGie s ywEs ox
[Row = [EVPLOYEE_ID [FIRST_NAVE [LAST_NAVE [EALL __[PHONE_NUVBER [HIRE_DATE [106.D___[SALARY [COMMISSION_PCT [MANAGER 1D [DEPARTVENT_ID
100 Steven King SKING 515.123.4567 6/17/1987 AD_VP 24000 103 %0
101 Neena Kochhar NKOCHHAR 515.123.4568 9/21/1988 AD_VP 17000 102 %0
102 Lex DeHaan LDEHAAN 515.123.4569 1/13/1993 AD_WP 17000 102 %0
103 Alexander Hunold AHUNOLD 590.423.4567 1/3/1990 IT_PROG 9000 102 60
104 Bruce Emst BERNST 590.423.4568 5/21/1991 IT_PROG 6000 103 &0
105 David Austin DAUSTIN 590.423.4569 6/25/1997 IT_PROG 4300 103 60

Figure 8: HR Schema Employees Table

Another hierarchical relationship has the JOBS table at the top as shown in Figure 9.
[image: image7.png]i SELECT a.job_id, a.job_title, a.min salary, a.max_salary
FROM jobs a

[1]: Statement processed n 0.02 sec; see Spool tab,

Huwarms - ofgi@sew|E23ox

[Row = [105D 0B TImE [N SALARY [MaX_saLARY |

I o s presdent o0 o000
2/00p Adnstaton Ve resdent 15000 30000
SM0ASST Adrinstation Assistent w000 a0
SFMGR FronceMonager EE
S FLACCONT Accoutant a0 s000
SACHR Accounnganager I
7 ACACCOUNT publc Accontant 0 s000

8 SAMAN Ssles Manager 10000 20000

Figure 9: HR Schema Jobs Table

Since employees can have many jobs, and the same job title may be held by many employees, you will need an intersection table to capture the many-to-many relationship between EMPLOYEES and JOBS. Thus a JOB_HISTORY table was added as shown in Figure 10.
[image: image8.png]im SELECT a.employee_id, a.start date, a.end date, a.job_id,
a.qeparcment_ia
FROM job_history a

tatement processed n 0.02 sec; see Spool b

e o Er

o # [EVPLOVEE 1D [START DATE [0 DATE
b 102 1/13/1993 7/24/199%8
1019/21/1989 10/27/1993
101 10/28/1993 3/15/1997
2012/17/19% 12/19/1999
114 3/24/1998 12/31/1999
122 1/1/1999 12/31/1999

Figure 10: HR Schema Job History Table

Looking a little deeper at the actual data in these tables, you may discover a few surprises. Try the following: Collect the Manager IDs that are currently assigned in the EMPLOYEES table as shown in Figure 11.
[image: image9.png]select distinct emp.manager_id
from employees emp

BIEERAHEEIC

Figure 11: Manager IDs
Next add JOB_ID LASTNAME, and FIRSTNAME to your query. You will discover that the employee with EMPLOYEE_ID = 103 is an IT_PROG (Programmer) acting as a manager because his EMPLOYEE_ID is listed in the MANAGER_ID column as shown in Figure 12.
[image: image10.png]select a.employee_id,
30b_ID [I' ‘Il a.last_name |1, 'I| a.firsc_name as mgr_name
from employess a
where a.employee_id in(select distinct emp.manager_id

from employees emp)

[1]: Statement processed n 0.02 sec; see Spool tab (Updateable)

= R R e R

b
<
*

102 AD_VP De Haan, Lex

103 IT_PROG. Hunold, Alexander
108 FLMGR Greenberg, Nancy
114 PU_MAN Raphaely, Den
120 STMAN Welss, Matthew
121 STMAN. Fripp, Adam

122 STMAN. Kaufing, Payam
123 STMAN Volman, Shanta
124 STMAN Mourgos, Kevin

EBoaxmuaun

Figure 12: Manager Names
Look the Shipping Dept (Dept 50) shown in Figure 13. It has 5 managers! All of the managers in this department report directly to the President, but only one (121) is listed in the DEPARTMENTS table (shown in Figure 7).
[image: image11.png]im select * from employees where job_Id like 'ST_t'
order by job_id desc

[1]+ Statement processed n 0.0 sec; see Spool tab (Updateable)

S =T

Row = [EVPLOYEE 10 |FIRST_NAME [LAST NANE [EMALL MaNAGER D
C 124 Kevn Hourges 0
| 2 23Shenta Volman 100
s 122 Payam Kaufing 100
s 121 Adam Fiop 100
s 120 Mathen weiss 100
s 134 peter Vergas 124
7 193 Rancel Matos 124
s 1wt Daves 124
o 1¥1Tema Rak 124
| » 10 dosha patd 2
| 139 John se0 £
1 = 138 Stephen Stles 123

Figure 13: Data in the HR Schema

The following are the business rules for changing the manager to whom an employee reports:

a. An organization that allows for multiple managers in each department (or no manager at all)

b. Employees may report to any of the managers within the department. (Employees who are acting as Managers, report to a manager in another department)
c. Only the President may have a null manager_id.
d. Employees may be managed by a non-manager.

When building your business logic to support updating an employee’s manager, you will need to take these business rules into account. Also, additional database objects will be needed to give the end user appropriate feedback when they select an inappropriate manager.
The following exercises will guide you through the process of implementing the business rules above using the HR Schema.

II. Building the application
A. Database
The following items needed to be added to the database in order to support the proposed architecture of housing all of the validation and complex logic to update a single column in the database.
Implement a database View with a multi-table join that represents “Page One” in the application. (Just use the EMP_DETAILS_VIEW from the HR schema)
1. Create an INSTEAD OF trigger on the database view, to update the underlying table.

2. Create a database table to hold custom error messages.
3. Create a database package to hold package variables that store the current error.
4. Create a database one-row view to expose custom error messages.
5. Create a JUNK table for debugging.

6. Create a Sequence Counter to populate ORDER_NR in the JUNK table.

7. Create an autonomous_transaction Procedure to populate the JUNK table.
1. Create an INSTEAD OF Trigger

INSTEAD-OF Trigger on “PageOne” View (Emp_Details_View)
CREATE OR REPLACE TRIGGER t_iu_emp_details_view

 INSTEAD OF

 UPDATE

 ON emp_details_view

REFERENCING NEW AS NEW OLD AS OLD

declare

 current_exception_Id number;

 old_mgr_job_Id varchar2(10);

 new_mgr_Job_id varchar2(10);

--cursor to get custom error message

 cursor current_Exception_info(cin_current_exception_Id NUMBER) is

 select exception_CD from brim_exception

 where exception_id = cin_current_exception_Id;

 current_exception_CD_Row current_Exception_info%ROWTYPE;

 --cursor to get job_id for old manager

 cursor old_manager_Info is

 select job_Id from employees

 where employee_id = :old.manager_id;

 old_job_id_Row old_manager_Info%ROWTYPE;

--cursor to get job_id for new manager

 cursor new_manager_Info is

 select job_Id from employees

 where employee_id = :new.manager_id;

 new_job_id_Row new_manager_Info%ROWTYPE;

--Now check for updates,

--then apply logic to either update, or throw error messages

Begin

if updating ('manager_id') then

--Capture Debug Information

--p_junkauton('employee_id= '||:old.employee_id||

-- ', oldmanager_id= '||:old.manager_id||

-- ', newmanager_id= '|| :new.manager_id);

 --check rules

 --get job_id for old manager

 open old_manager_Info;

 fetch old_manager_Info into old_job_id_Row;

 close old_manager_Info;

 --get job_id for new manger

 open new_manager_Info;

 fetch new_manager_Info into new_job_id_Row;

 close new_manager_Info;

 --first rule: special case of Deceased managerId =176

 if :new.manager_id = 176 then --managerId =176 Taylor, Jonathon

 current_exception_Id := 20;--Error: This manager is deceased

 --else test: if old manager job_id is different from new manager job_id

 elsif nvl(nvl(old_job_id_Row.job_Id,new_job_id_Row.job_Id),'zasdfg') =

 nvl(nvl(new_job_id_Row.job_Id, old_job_id_Row.job_Id) ,'zasdfg') then

 --if same no error

 current_exception_Id := -1;

 else -- if different create error message

 --Error: the manager you have selected is in a different area.

 current_exception_Id := 10;

 end if;

 --Check current_exception_Id for error (not equal to -1)

 if (current_exception_Id != -1) then

 --cursor to get custom error message

 open current_Exception_info(current_exception_Id);

 fetch current_Exception_info into current_exception_CD_Row;

 close current_Exception_info;

--Capture Debug Information

--p_junkauton('current_exception_Id= '||current_exception_Id||

-- ', current_exception_CD_Row.exception_CD= '||

-- current_exception_CD_Row.exception_CD);

 -- now update package variables that brim_error_view is based

 dml_error.setmessage(10, current_exception_CD_Row.exception_CD);

 else

 -- no rules broken proceed with update

 update employees set manager_id = :new.manager_id

 where employee_id = :old.employee_id;

 --clear any error message

 dml_error.clearmessage;

 end if;

end if;

end;
2. Create a database table to hold custom error messages when validation fails
CREATE TABLE brim_exception

 (exception_id NUMBER NOT NULL,

 exception_cd VARCHAR2(200) NOT NULL,

 descr_tx VARCHAR2(2000))

/

[image: image12.png]fm select * from brim exception

[1]+ Statement processed n 0.02 sec; see Spool tab (Updateable)

STeyw"
BIEE

3. Create a database package to hold package variables that store the current error
CREATE OR REPLACE

PACKAGE dml_error is

--**--

--this package handles all brim exceptions

--***--

-- Package Variables to store the current error message

Id Number;

Message Varchar2(2000);

-- procedures to set and clear the package variables

procedure SetMessage(NewId Number, NewMessage varchar2);

procedure ClearMessage;

-- functions to get the current error message

function GetId return Number;

function GetMessage return Varchar2;

end;

/

CREATE OR REPLACE

PACKAGE BODY dml_error

IS

--**--

-- Purpose: provide get/set procedures/functions to access package variables

--**--

 function GetId return Number is

 begin

 return Id;

 end;

 function GetMessage return varchar2 is

 begin

 return Message;

 end;

 procedure ClearMessage is

 begin

 Message:=null;

 id:=null;

 end;

 PROCEDURE SetMessage

 (NewId IN Number,

 NewMessage IN varchar2)

 IS

 BEGIN

 Id :=NewId;

 Message := NewMessage;

 EXCEPTION

 WHEN OTHERS THEN

 null ;

 END;

END;

/
[image: image13.png]|a+s-cucfesnadRAK» UMD | ~-R

L

(5 Code Explorer
= @ dn_eror

< p() Caresssge
=40 cetid
= 10 Getbesage
PO Setressage
i
i Messsge

Spec | goy |

[PACKAGE aml_exzor is
- NAME:=DML ERROR

- omvERi= RDorsey

- CREATE DATE:= 04-25-05

~this package handles all brim sxceptions

- wHO WEEN WHAT (Descr)

- Package Varisbles to store the current error message
1d Namber;
Message Varchar2 (2000) ;

- procedures to set and clear the package varisbles
procedure SetMessage (NewId Number, NewMessage varchar2)
procedure ClearMessage;

-- functions to get the current error message
function GecId return Number;
function GetMessage return Varchar2:

——

4. Create a database one-row view to expose custom error messages.
create or replace view brim_error_view (

 code,

 message)

AS

select dml_error.getid Id, dml_error.getmessage Message

from dual

/

5. Create a JUNK table for debugging purposes:

-- sequence counter for JUNK

CREATE SEQUENCE junk_seq

 INCREMENT BY 1

 START WITH 101

 MINVALUE 1

 MAXVALUE 999999999999999999999999999

 NOCYCLE

 ORDER

 CACHE 20

/

-- create table for JUNK

CREATE TABLE junk

 (junk VARCHAR2(4000),

 creat_dt DATE DEFAULT sysdate,

 order_nr NUMBER DEFAULT 0

)

/

-- Triggers for JUNK

CREATE OR REPLACE TRIGGER ui_junk

 BEFORE

 INSERT

 ON junk

REFERENCING NEW AS NEW OLD AS OLD

 FOR EACH ROW

begin

 select junk_seq.nextval

 into :new.order_nr

 from dual;

end;

An autonomous_transaction Procedure to populate the JUNK table:
CREATE OR REPLACE

PROCEDURE p_junkauton

 (in_tx varchar) is

 PRAGMA AUTONOMOUS_TRANSACTION;

 begin

 insert into junk (junk) values(in_tx);

 commit;

END; -- Procedure

/

NOTE: You can now add the P_junkauton() procedure in any of your database PL/SQL. This allows you to capture debug data even if an exception is thrown, due to the autonomous_transaction and associated inner commit. The sequence counter populating the order_nr guaranties that you can put P_junkauton() in several places and still tell which piece of code executes first.
The following code could be included in the trigger used above as an aid to debugging.
--Capture Debug Information

p_junkauton('employee_id= '||:old.employee_id||

 ', oldmanager_id= '||:old.manager_id||

 ', newmanager_id= '|| :new.manager_id);
This screenshot shows an example of the debugging information that would be placed in the Junk table to view old and new values.
[image: image14.png]@@ SELECT a.junk, a.creac_dt, a.order_nr
FROM Junk a
order by 1 desc

[1]: Statement processed n 0.0 sec; see Spool b,

»ou+ - offEEre[EE O x

Row = [[crearor [oRoER IR,
=15 zoher2005 S0 G

=

29-2pr-2005 13:48:47

|employee_id= 125, oldmanager_id= 124, newnanager_id= 195
29-Apr-2005 13:48:49

2 employee id= 125, oldnanager_id= 124, newmanager d= 145
3 employee_id= 125, oldmanager_id= 124, newmanager_id= 145

»
60

II. Working with JDeveloper Middle Tier - ADF BC
The following is a summary of steps that you will use to explore JDeveloper and build a simple web application module. Each step is explained in more detail with screen shots showing what you should see as you complete each one.
A. Create a database connection (Username: dulcian Password: oracle).
B. Create a new Application Workspace based on the Web Application (default) template.

C. Build ADF BC View objects to handle read-only data:

· Custom error messages (BrimErrorView)
· List-Of-Values (LOV) to update a given field on “PageOne” (MgrLOVView)
D. Build ADF BC entity and view objects to handle read/write data:

· Point to the custom database View for “PageOne” (PageOneEmpDetailsView)
E. Build ADF BC ApplicationModule to:

· Expose ADF BC Views to the client. (AppModule)
· Expose custom java code in the AppModuleImpl.java to the client. (getBrimErrorMessage)
A. Create a database connection
1. Select the Connections tab of the Navigator. If it is not visible, select View | Connection Navigator from the menu.
2. Right-click the Database node and select New Database Connection. If the Create Database Connection - Welcome page appears, click Next.

3. On the Type page of the Create Database Connection wizard, enter “dulcian” for the Connection Name. Leave the Connection Type on the default setting - Oracle (JDBC). Click Next.

4. On the Authentication page, enter “dulcian” as the Username and “oracle” as the password. Leave the Role field blank. Check the Deploy Password checkbox as shown in Figure 14. Click Next.

[image: image34.png]|

(S5 bindings Message).
B3 yvindings{ Empioyeeid.iaber] |
B3 yvindingsManageric].iabep] |

B3 yvindings{ Deparimentid].abey] |

Figure 14: Connection Manager Authentication page
5. On the Connection page, leave the default settings (thin, localhost, 1521, ORCL) and click Next.

6. On the Test page, click the Test Connection button. A “Success!” message should appear in the Status window. Click Finish. You will see the new connection listed in the Navigator. If it doesn’t, go back and check the previous steps.
B. Build an application workspace based on the Web Application Template

1. Click the Applications tab in the Navigator. If it is not visible, select View | Application Navigator from the menu.

2. Right-click the Applications node and select New Application Workspace.

3. Fill in the Application Name as shown in Figure 15 and select Web Application [Default] from the Application Template pulldown. Click OK.
NOTE: The Application Template contains default projects that are oriented toward a certain technology such as Struts. The template affects what options and objects are available by default for use in the projects. Almost all of the lists in 10g are context-sensitive, so inappropriate options are rarely available.
 [image: image35.png]‘=Ll AppioduleDataControl
=B srmermorien
2 Code

(3 Operstions

E Marowien

5] PageOneEnpDetasticntiew
(26 Operations

Drag and Drop As:
abl Value

Figure 15: Create Application Workspace dialog
You will now see the _JSP_Struts_HR_DeptEmpView_ODTUG workspace in the Applications Navigator along with the Model and ViewController nodes created as part of the Web Application template.
NOTE: Some items are shown in italics. This means that they have not been built (compiled). When you click either the Make or Rebuild icons on the toolbar, the italics will disappear. This is a handy way to tell when something in JDeveloper has been changed since any “unbuilt” items will show in italics.
C. Build ADF BC View objects to handle read-only data
The next step is to create the view objects needed for this simple application. There are two basic ways to build ADF BC View Objects that are intended for read-only data. One way is designed to build the query automatically when it can be based on a database table or view. The second way presents an empty text box where you must enter the desired code.
1. Create Business Components

The first step is to create the business components needed for the application.
a. To create the appropriate view objects, right click the Model node in the Applications - Navigator and select New.
b. In the New Gallery, select the Business Components category (under Business Tier) and Business Components from Tables from the Items list as shown in Figure 16. Click OK.
[image: image36.png]PageOneEmpDetailsview\iew

Departmentid
52 Frstiame
52 Lasthame
52 Daparmertiane
52 Jbrele

Gy
52 Stateprovince
(3 Operstions
(g Operstions
Ors and Drop

D Text area

3 Hidden Field

3 File Input Fild
e Password Field
53 Render value
5] singl select List

23 Radio Button Group.

Figure 16: New Gallery
c. When the Business Components Project Initialization dialog appears, make sure that the new database connection (dulcian) you created earlier appears in the pulldown. Leave the other settings and click OK.

d. The Create Business Components Welcome page will appear. Click Next.

e. On Step 1, of the Wizard, Entity Objects from Tables, uncheck the Tables checkbox and check the Views checkbox to see the available views. You will see BRIM_ERROR_VIEW and EMP_DETAILS_VIEW.
f. Select EMP_DETAILS_VIEW and click the right arrow to move it to the selected column. Use the Entity Name field to change the Entity Name to “PageOneEmpDetailsView.” Click Next.

g. On the Updateable View Objects from Entity Objects page, select PageOneEmpDetailsView and click the right arrow to move it to the selected window. Click Next.

h. On the Read-Only View Objects from Tables page, uncheck the Tables checkbox and check the Views checkbox as shown in Figure 17. Select BRIM_ERROR_VIEW and click the right arrow to move it to the Selected window. Note that JDeveloper adds an additional “View” suffix to the name. In the View Name Field, delete the extra “View” as shown in Figure 17. Click Next.

[image: image15.png]Business Components - Step 3 of 4: Rea iew Objects from Tables

Specify the package to contain your new View Objzcts and View Links.
Package: | model v

Filtr the types of schem objects to splay as avaiabl, then select the schema
object() and clck'>' o create read-only View Objects ety from tables,

Hame Fiter: Auto-uery
Shemat R o[oy
Object Types: [Tables vews []symonyms

Avaiatle: Selected:

EMP_DETAILS_VIEW

AEEN

< 3

View Name: | ErimErrartien

Figure 17: Selecting Read-Only View Objects
i. On the Application Module page, leave the default settings and click Next. Since this is the first time you used the Business Components from Tables wizard, you are able to create and populate the Application Module. Later you will clean up the code that is generated, and add the rest of the objects needed for the user interface code.
j. You can review your selections on the Finish page and go Back if needed. Otherwise, click Finish. You will see the additions in the Navigator which should look like Figure 18. Click the Rebuild button to compile the code.

NOTE: By default, JDeveloper may name the AppModule view object instances with a trailing number such as 1, 2, 3...etc. as shown in the Structure pane in Figure 18. This is not helpful or useful. It is recommended that you delete these extra instances and rename them appropriately to avoid confusion. You will do this in Section V of this tutorial.
[image: image16.png]B _sp_struts_HR_DeptEmpView_0D.
=01 Model
= [2) Application Sources
(=-(F model
@
5 Brimrrorview
'3 PageOneEmpDetsistien
T PageOneEmpDetaisvienVien —
53 viewcontroller

Bpexie o1
(B Applcations: (@ U
(5] Appitodule - Stucture 2x
S|P E
@ portode
= soures

@ apptodue i
3 AppMocieiml java
0 betjxcfg

521 View Object Instnces
5 PageOneEmpDetaisViewhizn1
8 BrinErorview

Figure 18: Application Navigator/Structure pane

k. Double click BrimErrorView in the Navigator to open the View Object Editor. Select the Java node. Under ViewRow Class: BrimErrorViewRowImpl, check the Generate Java file checkbox. Click Apply and OK.
2. Create a New View Object
The next step is to create a new view object to support the manager LOV.
a. Right-click the top level Model node in the Applications Navigator and select New. Select the Business Components category and the View Object item. Click OK.

b. Click Next if the Welcome page of the Create View Object Wizard appears. Leave the default package name and enter “MgrLOVView” for the Name. Ensure that the “Rows Populated by a SQL Query with” radio button is selected. Select the Read-only Access radio button and click Next.
c. On the Query page of the Create View Object wizard, manually add the following query in the Query Statement window:
select null as employee_id, null as mgr_name from dual

union all

select a.employee_id, job_ID ||' '||

a.last_name ||', '||a.first_name as mgr_name

from employees a

where a.employee_id in(

select 176 as manager_id from dual

union all

select distinct emp.manager_id

from employees emp)

d. It is a good idea to click the Test button to test your code. You should receive a “Query is valid” message. Click OK, then click Next.

e. Review the information on the Attribute Mappings page and click Next.

f. Click Next on the Attributes page.

g. On the Attribute Settings page, verify that EmployeeId shows in the Select Attribute pulldown. Ensure that the Queriable checkbox is checked. Check the Selected in Query checkbox and the Employee ID must also have the Key Attribute checkbox checked as shown in Figure 19.

[image: image17.png]Attribute

Name:

Type:
Default

Selected in Query
] Disriminator
[passivate.

Figure 19: Attribute Settings
h. Use the Select Attribute pulldown to select the MgrName attribute. Ensure that the Queriable checkbox is checked and check the “Selected in Query” checkbox. You do not need to select the Key Attribute checkbox for this attribute. Click Next and Finish to complete the wizard.
i. Click the Rebuild icon on the toolbar to compile the project. Make sure that the Messages window shows a successful compilation.

j. If desired, you can use the query above in the JDeveloper SQL Worksheet (Tools | SQL Worksheet) to retrieve the Manager Names for each Employee ID in the HR database as shown in Figure 20.

[image: image18.png]Enter SQL tatement
Red
Select null as employee_id, null as ngr_name from dual
union a11
select a.employee_id, Job_ID |1’ ol
a.last_nane |1, 'lla.first nene as nor_name
fron employees a
where a.employee id in(
select 176 as manager_id from dual
union a1l
Select distinct emp.manager_id
from euployees emp)|

]

Results

Fetch Size1 100 Ferchtiext [Refresh

EMPLOYEE _ID MGR_NAVE

m /AD_PRES _Fing, Steven |
i [AD_VP_ Kochhar, Neena

102 [AD_VP e Haan, Lex

105 IT_PROG _Hunold, Alexander
105 FLMGR__Greenberg, Nancy
14 PU_VAN _ Raphasly, Den
20 IST_MAN_ Wieiss, Matthen
12t ST_MAN_Frip, Adam

122 ST_MAN__ Kaufing, Payem
125 ST_MAN Valiman, Shanta
124 ST_MAN_ Mourgos, Kevin
15 SA_MAN _ Russel, John

3 SA_IMAN__ Partnrs, Karen
7 SA_MAN _Enazurz, Aerto
3 SA_MAN _ Cambraut, Gerald
149 5A_VIAN_ Zlotkey, Eleri

76 5A_REP_Taylor, Jonsthon
201 MK_MAN_ Hertstein, Michael
205 [AC_MGR _ tigains, Shelley

Figure 20: Retrieving Manager Names
IV. Remove extra columns from PageOneEmpDetailsView to pass only data needed for PageOne and remove generated RowID
a. Double click PageOneEmpDetailsViewView to open the View Object Editor. Click the Attributes node (not the plus sign). In the Selected pane, hold down the Ctrl key and highlight the following unnecessary attributes: JobId, LocationId, CountryId, Salary, CommissionPct, CountryName, and RegionName. Click the left arrow to move these out of the Selected pane. Click Apply and OK.

b. Double click PageOneEmpDetailsView to open the View Object Editor. Click the Attributes node (not the plus sign). In the Entity Attributes pane, hold down the Ctrl key and highlight the following unnecessary attributes: JobId, LocationId, CountryId, Salary, CommissionPct, CountryName, RegionName and click the Remove button. Click Apply. You should now have the following entity attributes: EmployeeId, ManagerId, DepartmentId, FirstName, LastName, DepartmentName, JobTitle, City, StateProvince and RowID.

c. If not already expanded, click the plus sign next to the Attributes node. Click the EmployeeId attribute. Check the Primary Key checkbox. Ensure that the Persistent, and Mandatory and Queriable checkboxes are also checked as shown in Figure 21. Click Apply.
[image: image19.png]& Entity Object Editor: PageOneEmpDetailsView.

Name
- Atributes

Managerld
Departmentid
Firsthiame
Lasthame
Departmentiiame
bt
cry
StateProvince
RonID

Tuning

Java

Valdation

Publsh

Subscrbe

Authorization

Custom Propeties

Attribute

[[Entity AttribLt= | attribute Propertes | Cotrol Hints

Name:

Employeeld

Type

Number

Default

ersistent
Fiardatory

[pisgriminetor

] Change Inicator

[Selectedin Query.

Database Column

Primary Key
[trigue

Queriable

[—

Updateable

© Amars
© vihie iow
OMever

Refresh After

[Jupdete
[insert

Name:| ENPLOYEE _ID

| Ty NUVEER(, 0)

Figure 21: Entity Object Editor
d. Select RowID from the Attributes List and uncheck the Primary Key checkbox to allow you to delete it. Click Apply and OK.

e. Double click PageOneEmpDetailsViewView in the Navigator. Click the RowID attribute in the Selected column and click the left arrow to remove it. Click Apply and OK.
f. Double click PageOneEmpDetailsView in the Navigator. Select the RowID attribute and click the Remove button. Click Apply and OK.
g. Click the Rebuild icon in the toolbar to compile the project.
V. Updating the ADF BC Application Module
a. Double click AppModule in the Navigator to access the Application Module Editor.

b. Move all of the items from the Data Model side out of the pane one at a time using the left arrow.

c. Using the right arrow and the Name and Instance Name fields, move and rename the View Objects so that the Application Module Editor Data Model window (right side) looks like Figure 22. You can either rename the object in the Available View Objects side before moving it to the Data Model side or rename the Instance after it is moved to the Data Model side. Click Apply after each name change to save it.
[image: image20.png]Select a view abject from the tree of avalable view objects, selectthe instance or
‘AppHodule to be s parent n the data model tree, and clck > to create a named nstance of
the view object n the Data Model

Avalable View Obects Dt Model

= @8 okl 7 Brnrcrvien
T ernrorvien W varLowien
G varLowien 78 PageOneEngDetalsvientiew

5 PageOneEnpbetaistiention

Figure 22: Application Module Editor
d. Click OK. The Structure pane should look like Figure 23. Click Rebuild to compile the project.

[image: image21.png]B Appttodule - Structure

E betiactg
521 View Object Instances
7 BrmErroriew
i mrLovien
%) Pag=OneEmpDetaisyientiew

Figure 23: AppModule Structure pane

e. In the AppModule - Structure pane, double click AppModuleImpl.java to access the code editor.

NOTE: AppModuleImpl.java file is where you add custom Java code. This file works with the ADF data bindings to provide you with drag & drop access for your custom code.
f. To add the following code (methods) at the top of the AppModuleImpl.java file just below the class declaration: public class AppModuleImpl extends ApplicationModuleImpl, click after the curly bracket and press Enter to add a new line. Paste or type in the following code:

public String getBrimErrorMessage()

 {

 //send data down to the database

 this.getTransaction().postChanges();

 this.getBrimErrorView().executeQuery();

 if(this.getBrimErrorView().first()!=null &&

 ((BrimErrorViewRowImpl)this.getBrimErrorView().first()).getMessage()!=null &&

 (((BrimErrorViewRowImpl)this.getBrimErrorView().first()).getMessage()).length()>0)

 {

 //refresh clean data from database

 int currentRowIndex = this.getPageOneEmpDetailsViewView().getCurrentRowIndex();

 this.getPageOneEmpDetailsViewView().executeQuery();

 this.getPageOneEmpDetailsViewView().setCurrentRowAtRangeIndex(currentRowIndex);

 this.getTransaction().commit();

 return "isError";

 }

 return "success";

 }

 public void setPageOneToEmp125()

 {

 this.getPageOneEmpDetailsViewView().executeQuery();

 this.getPageOneEmpDetailsViewView().setCurrentRowAtRangeIndex(25);

 }

g. Click the Rebuild icon to compile the code.
NOTE: If there are errors when you compile the code, they are likely due to a problem with the view names. Check to make sure that the view names in the Navigator match the names in the code.
h. Double click AppModule in the Navigator to access the Application Module Editor. Expose the custom methods by clicking the Client Interface node and moving both of the available methods into the Selected panel using the double arrows. Click Apply and OK.
i. Click the Rebuild icon and make sure that the project compiles with no errors. Close the AppModuleImpl.java window by clicking the X on the tab.
III. Build the JSP Struts Client

Now you are ready to create the JSP/Struts portion of your application.

A. Create the Struts Page Flow Diagram

a. Right-click the View Controller node in the Navigator and select Open Struts Page Flow Diagram. The Component Palette or the Data Control Palette will be displayed on the right side of the screen and the blank diagram will be in the center.
b. If necessary, click the Components tab to display the Struts Page Flow components. Drag an Action component from the Component Palette on to the struts-config.xml diagram.
c. Click the name (grey area) and rename it “/startHere”. Press Enter.

d. Add a “Welcome” page by dragging the Page icon on to the diagram. Click in the gray area to rename the page “/welcomePage.jsp”. Press Enter.

e. Add a Data Page and rename it “pageOneDP”. Press Enter. This page actually consists of the components shown in Figure 24.
[image: image22.png]Struts Action

Figure 24: Data Page components
f. Add another Page and rename it “/successPage.jsp”. Arrange the diagram as shown in Figure 25.

[image: image23.png]Estruts-config.xml|

IstartHere

IwelcomePagejsp

=)

IpageOneDP

IsuccessPagejsp

1B le

Figure 25: struts-config.xml diagram
a. Double click each of the components to create them. Click OK on the Create dialog for the /startHere Data Action. You will then see the code file in the main window. An additional tab will be added to the work area. Click the X in the right corner of the tab header to return to the struts-config.xml diagram. Double click on each of the pages. The pages will open as a blank page each time. Click the X in the right corner of the page tab to close it. Click Yes on the Save Files dialog for each of the pages. The exclamation points will disappear.

1. Add Navigation and custom logic

Use the following steps to add the page navigation and logic to the application.
a. Click Page Link in the Component Palette. Then click the welcomePage and pageOneDP to connect them as shown here:

[image: image24.png]iwelcomgPage,sp

IpageOneDP

NOTE: If needed, you can right click on the line and select Straighten Lines to clean up the diagram.

b. Expand the ViewController, Application Sources, and view nodes in the Applications - Navigator. Double click the ApplicationResources.properties node to view ApplicationResources.properties for the Link’s displayed text:
 Change “link.pageOneDP=link to /pageOneDP.do” to “Go to Page 1.” Close the window by clicking the X on the ApplicationResources.properties tab. Click Yes on the Save Files dialog.
c. On the struts-config.xml diagram, add a Page-Link from the Success page back to PageOne as shown here.
NOTE: You can create nodes in the lines you draw by simply clicking and changing directions as you draw.

[image: image25.png]IwelcomePagejsp

IpageOneDP

IsuccessPage,sp

d. Add a DataAction and place it as shown in Figure 26. Rename it /getBrimError. Press Enter
e. Add a Forward from pageOneDP to getBrimError. Double click the “success” word and rename the Forward “Submit”. Press Enter.
f. Add a Forward from getBrimError to pageOneDP, rename to “isError”. Press Enter.
g. Add a Forward from getBrimError to successPage.jsp, leave name as “success” Your diagram should look something like Figure 26.
[image: image26.png]L Data Control Palette. 2x

b

IstartHere IwelcomePage.jsp
i

Submit
-

IpageOneDP

TeErar
igetBrimError

IsuccessPagejsp

= I optodDateconta
- [E] BrimErroriiew
& E MarLovview
#-[E] PageOneEmpDetailsviewtiew
& g Operatons
LR fied—
¥ [f0)] setPageOneToEMP125()
B Conmi
B ralback

Drag and Drop As:

&Components | [3Data Controls

=2 fpageOneDP - Property Inspector 1 X|

£ Em Sl

T Bl

it
classtlame _[oracke.adf.cortroler..
Forward
i
include
input
@ name [Dataorm
@ parameter __|fpageOneDP.jsp
a path ™ pageOneDp.
prefix
roles
scope (DeFaut)
auffix
a type (radle.adf cortrollr .
ko (Default)
valdate (DeFault)

Figure 26: Dragging & Dropping from the Data Control Palette
h. Switch from the Component Palette to the Data Control Palette using the Data Controls tab under the palette area. Expand the AppModuleDataControl node and the Operations node. Drag & drop getBrimErrorMessage() from the Data Control Palette on top of the /getBrimError data action on the struts-config.xml diagram. You will not see any change in the diagram but you will see additions in the Navigator.
i. Double-click /getBrimError to open the Create Struts Data Action dialog. Click OK to create the getBrimErrorAction class.

j. When the GetBrimErrorAction.java tab opens, add the following code in between the curly brackets:

protected void findForward(DataActionContext actionContext) throws Exception

 {

 HttpServletRequest request = actionContext.getHttpServletRequest();

 if(request.getAttribute("methodResult")!=null && ((String)request.getAttribute("methodResult")).length()>0)

 {

 actionContext.setActionForward(actionContext.getActionMapping().findForward((String)request.getAttribute("methodResult")));

 }

 super.findForward(actionContext);

 }

k. The DataActionContext in the code will be underlined in blue. Place the cursor anywhere on the blue line and click. Press Alt-Enter to make the required imports. You will need to do this twice. Close the GetBrimErrorAction.java file by clicking the X on the tab. Select Yes on the Save Files dialog.
l. Click the Components Tab to return to the Components Palette and add a DataAction between the startHere dataAction and the welcomePage as shown in Figure 27.
m. In order to set the model for the page correctly, draw a Forward from /dataAction1 to /pageOneDP. Press the delete key to delete this forward.

n. Add a Forward from startHere to dataAction1
o. Add a forward from dataAction1 to the welcomePage. The diagram should now look like Figure 27.
[image: image27.png]* sucsess g success

Istarthere idatanctiont Melmmepm_‘sn

Submit

IpageOneDP

TeErar
igetBrimError

IsuccessPagejsp

Figure 27: struts-config.xml Diagram
p. Click the Data Controls tab. If needed, expand the AppModuleDataControl and Operations nodes. Drag and drop the setPageOneToEmp125() operation onto the /dataAction1 component in the struts-config.xml diagram. You will not see any change in the diagram.
q. Click the Rebuild icon to compile the project.

2. Edit the JavaServer Page

You can now edit the Java Server Page you created.

a. Double click /welcomePage.jsp to edit the Welcome page. Click under the link.pageOneDP marker, press Enter and type “Welcome”. If desired, you can use the pulldowns and other text edit buttons to change the look of the text. For this practice, select Heading 1 from the first pulldown. Note the font change.

b. Click the struts-config.xml tab. Double click successPage.jsp, click under the message link.pageOneDP, press Enter and type “Success!” If desired, you can use the pulldowns and other text edit buttons to change the look of the text. For this practice, drag over the word and click the B to make the text bold.

c. Close both of the JSP pages by clicking the X on each tab. Answer Yes to the Save Files dialog for both.

3. Edit pageOneDP
a. Double click pageOneDP to open the blank page. From the Data Control Palette, if needed, expand the AppModuleDataControl and select PageOneEmpDetailsViewView. Select Input Form from the Drag and Drop As pulldown. Drag and drop the PageOneEmpDetailsViewView onto /pageOneDP.jsp as an InputForm. You will see something like this:

[image: image28.png]Gstruts-config. x| [£]pageDneDP.jsp)
@ [pone. [pefaule vinone v B B 7 U ==

[EsoindingsEmpioyeeid iabey

[
B3 yvindingsManageric].iabep] |
[Bs¢bindingsf Deparimentid} iabey] | 1]
B3 yvindings Firstiame .iabes] | [|
[Bsyvindings LastName] labey] | [|
[Bsbindings{ Deparimentvame1 iabey] | 1]
Bsyvindings{uobTitie] abey] | [|
[Bsynindings{City].iabep] | [|

B3 yvindings{'StateProvinoe].iabef] |

[Esoindings editingMoce;

b. Add Navigation buttons by selecting PageOneEmpDetailsViewView in the Data Control Palette again and Drag and Drop as Navigation Buttons under the Submit button. Be sure to drop the navigation buttons inside of the red dotted line.
c. In the Structure pane, click the second tab (UI Model). Click the PageOneEmpDetailsViewViewIterator node and change the Range Size to -1 in the Property Inspector. Click Enter.
3. Construct the ManagerID LOV

a. In preparation of making the ManagerID an LOV it is necessary to delete the ManagerID Input Field from the JSP page. Select the field next to the {$bindings[‘ManagerID’].label} in the pageOneDP.jsp and press the Delete key. The page should look like this:
[image: image29.png][Bspindings{ Employeeia] iabey] |

b. You must also delete ManagerId from the pageOneDPUIModel.xml. Click the UI Model tab in the structure pane. Right click the ManagerId node and select Delete. Click Yes on the Delete:ManagerId confirmation dialog.
NOTE: This is a very import step to remember. Any time you remove a databound object from a JSP page, you must also remove it by hand from the appropriate UIModel file.

c. Expand the PageOneEmpDetailsViewView node in the Data Control Palette. Select ManagerID and Drag and Drop As List of Values into the blank cell next to ${bindings[‘ManagerId’] label}. A drop down arrow will appear as shown in Figure 28.

[image: image37.png]Specify a username and password
authertication at runtime, select D

Username:

Passuord:

Rol:

L

[image: image30.png][Esbincings(Empioyeeid].abey] |

[EsbindingsfManageriat.iabes] |

[Espincings(FirstnameT.abes] |

[Esbincings(Lastiame].jabes] |

[EsbincingsfDepartmeniName] iabel] |

[
H
[EsbincingsDepartmentiay iabey] | [
[
[
[
[

[EsbincingsfsobT e iabey] |

[Bsynindings{City].iabep] |

[Esbindings{'Stateprovince.iabes] | [

Figure 28: Adding a List of Values (LOV)
4. Edit the ManagerId with the List Binding Editor
a. In the Structure pane, select the UI Model node and double click ManagerId to open the List Binding Editor.
b. On the LOV (Source) Data Collection side, expand the AppModuleDataControl node. Select MgrLOVView and click the newly activated New button. Click OK on the Iterator Id dialog. The new iterator will appear in the Structure pane.
c. Select PageOneEmpDetailsViewView in the Target Data Collection pane and Click Add. Change the Target Attributes pulldown to Manager Id as shown in Figure 29.
[image: image31.png]inding Editor,

Choose the binding mods you want your controlto use

Lt Brvdngode: 101 iode

Bind the attributes of & source data colction to the attrbutes that your controldiplays. The source data collsction

defines the st of values (LOV) that the user may sslect to updte the control.

[LOV Update Attrbutes | Lo Display Attrbutes

Select the data colections whose attrbutes you want to bind.Then clck Add and choose an attribute from the LOV

and target data collctons to bind together. Click Add again to bind aditional ttributes.

LV (Source) Deta Collction:

Target Data Collecton:

=L AppModuieDataControl
Elsrimerrorvien

] PageOncEnpetasiention
5 operaons

=L AppModuieDataControl
Elsrimerrorvien
[E marovview

5 Operaons

Select LOV Source Iterator:

Select Target lerator:

[Branomentetor 9] Coew

] [rassorecnportsivsmron..] (Mo

LOV Attributes

Target Atributes

fEmployeeld

 [managerd

Figure 29: List Binding Editor

d. Still in the List Binding Editor, switch to the LOV Display Attributes tab and move MgrName from the Available Attributes pane to the Attributes to Display pane using the right arrow. Click OK.

e. [image: image38.png]Enter the name and oction orthe new application and specfy the
applcation teplate s us. Cick Manage Templates t custonize
Spplcation tempates.
spplcaton e

35 _Sruts HR_DeptEmplien_0DTUG

Directory Name:

i8St 1R _betEngiten 001U

Applcation Package Prefi

Applcation Template:

‘ieb Application [Default) | [(tnage Tenplates.

[io Template [All Techrologies]
b Applicaton [Default]
fweb Applicaton [Default - no controller]
[Web Application 15, Stuts, E36]
fweb Application [15P, EJ6]
lava Appicatian [Defaut]

ava Appication [Java, Swing] Fo J [cacel]

iding a datarbound web A
view and contraller
another project for the

On the Data Control Palette, expand the BrimErrorView node. In order to add error feedback to pageOneDP, drag and drop Message as a Value just above EmployeeId. As shown in Figure 30.

Figure 30: Adding error feedback message
f. Change the bindings.Message color to red by selecting it and clicking the color text Icon (the one with the A).
g. Close the pageOneDP.jsp window by selecting the tab and clicking the X. Answer Yes on the Save Files dialog.

h. Select the UI Model tab in the structure pane. Select the MgrLOVViewIterator node and change the Range Size to -1 in the Property Inspector. Press Enter.
i. Click the Rebuild icon to compile the application. Make sure there are no errors showing in the Messages window.
IV. Test the Application

You are now ready to test the application.
a. In the struts-config.xml diagram, right click startHere and select Run. The Embedded OC4J Server will start and the messages window will display the progress.
b. The default browser will open to display the Welcome page with a link to the pageOneDP.do. Click the link to display the page shown in Figure 31.
[image: image32.png]Employeeld
Managerld

ST_MAN Weiss, Mathew |

Nayer
'Shipping

Stock Clerk

[South San Francisco
Calfornia

I

Figure 31: Completed JSP page

c. Test the application by clicking the First and Last buttons. You can also view the list of Employees using the pulldown.
d. Test the error page by selecting a manager from a different department and click the Submit button.
Success

Page

PageOne�(update record)

Welcome�Page

(2005 Dulcian, Inc.
Page 27 of 33
ODTUG 2005 Hands-on Training

